Hydrolysis of α -Diimino Groups σ -Bonded to Palladium(II)

B. CROCIANI

Centro Chimica Tecnologia Composti Metallorganici Elementi Transizione, C.N.R., Istituto di Chimica Industriale, University of Padova, Italy

Received February 28, 1977

In previous papers we have described the facile protonation reaction [1] and the coordination properties [2] of α -dimino groups σ -bonded to palladium(II).

In this note we report the hydrolysis reaction of this organic moiety upon treatment with an excess of a strong mineral acid and water:

Ia, $R = R' = p \cdot C_6 H_4 OMe$ Ib, $R = R' = C_6 H_{11}$ Ic, $R = C_6 H_{11}$; $R' = p \cdot C_6 H_4 OMe$ IIa, IIIa, $R = p \cdot C_6 H_4 OMe$ IIb, IIIb, $R = C_6 H_{11}$

The reaction occurs at room temperature in CH_2Cl_2 solution on addition of either gaseous HCl and a few drops of water or a concentrated aqueous solution of HClO₄. Under these conditions the α -diimino group of complex I is at first quickly protonated [1] and then slowly attacked by water to yield the cationic acetyl-imino derivatives II.

The hydrolysis occurs on the imino group not bonded to the central metal as clearly indicated by the reaction of complex **Ic** having different substituents on the nitrogen atoms. In this case, complex **IIb** and p-methoxyphenylammonium cation are formed, the latter product originating from hydrolysis of the imino group not directly involved in the bond to palladium. It is to be noted that the same product **IIb** can also be prepared from the reaction of **Ib**, where both R and R' are cyclohexyl groups.

The σ -bonded imino group is not hydrolysed (nor is the palladium-carbon bond cleaved) during the course of the reaction, probably because of steric hindrance of the bulky triphenylphosphine ligands and reduced electrophilic character of the carbon atom (and correspondingly increased stabilisation of the Pd-C bond) by partial $d \rightarrow \pi^*$ back-donation.

The organic moiety of II may be considered as a coordinated (acetyl)(amino)carbene ligand, this view being supported by the reversible deprotonation reaction to the neutral acetyl-imino derivatives III. The protonation of σ -bonded imino groups is a well-recognised method of preparing carbene complexes [3-7].

All products have been characterised by elemental analysis, conductivity measurements, IR and ${}^{1}H$ n.m.r. spectra.

The cationic derivatives II are better isolated as perchlorate salts. They behave as uni-univalent electrolytes in methanol solution ($\Lambda_{\rm M} = 100 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$ for both complexes at $10^{-3} M$ concentration).

The most relevant features of IR spectra are reported in Table I.

The C-O and C-N stretching frequencies of the acetyl-imino groups in III are little affected by protonation. On the contrary, the ν (Pd-Cl) bands are considerably shifted from 248-255 cm⁻¹ in III to 322-328 cm⁻¹ in II, because of a markedly reduced *trans*-influence of the protonated acetyl-imino ligand [1].

The number of bands in the IR spectrum of complex IIa indicates the presence of two isomers both in the solid state and in CHCl₃ solution, presumably resulting from different conformations of the unsa-

Complex	ν(N-H)	ν(C=O)	ν(C=N)	ν(PdCl)
IIa	3240w (3230sh) 3190m (3180m) 3130m (3120m)	1690s (1688s) 1672m (1675sh)	1550m (1550m) 1540sh (1540sh)	328m 320sh
IIb	3190ms (3175ms)	1695s (1693s)	1575m,br (1582ms)	322m
IIIa		1678s (1674s)	1555ms,br (1553ms,br)	255m
Шь		1683s (1679s)	1581ms,br (1583ms,br)	248m

TABLE I. Characteristic IR Bands $(cm^{-1})^a$.

^aFigures in parentheses refer to CHCl₃ solution.

turated ligand. According to the formula of eqn. 1, a delocalised π -electron system would confer a partial double bond character also to the C-C bond between the acetyl and imino groups.

However, the ¹H n.m.r. spectra of complex IIa at room temperature and at -60 °C show no evidence for isomers, the only effect observed at low temperature being a broadening of the methyl signals of the -OMe and -CO-Me groups.

The position and pattern of the phenyl protons resonances for the p-MeOC₆H₄ N-substituent indicate a *cis* arrangement of this group and the palladium atom relative to the C-N bond by comparison with the spectra of the α -diimino derivatives Ia and Ic and their ZnCl₂ adducts [8].

On this basis, it seems likely that the isomers observed in the IR spectra arise from restricted rotation around the C-C bond:

The inability of the ¹H n.m.r. spectra to distinguish between the two species may be due either to accidental degeneracy of the methyl signals or, more likely, to a relatively fast rate of interconversion (even at -60 °C) in the n.m.r. time scale.

A similar behaviour was found also for the alkoxalyl complex, *trans*-[PtCl(COCO₂Me)(PPh₃)₂], for which two conformers were detected in the IR spectrum in CHCl₃ solution, while only one methyl signal was reported in its ¹H n.m.r. spectrum [9].

The spectroscopic data for complexes IIb and III indicate that only one of the possible rotational isomers is predominant in chloroform solution.

The N-H signals are not observed in the ¹H n.m.r. spectra of complexes II at room temperature because of fast exchange of this proton [1]. In the low temperature spectrum of IIa the N-H signal appears as a broad band at rather low field (11.7 p.p.m.), confirming the acidic character of this group.

Experimental

The complexes **Ia** and **Ib** were prepared as previously described starting from cis-[PdCl₂(CNR)₂] with R = p-C₆H₄OMe and C₆H₁₁ respectively [1]. The complex **Ic** was prepared with a similar method starting from the mixed derivative cis-[PdCl₂-(CNC₆H₁₁)(CNp-C₆H₄OMe)] [8].

Hydrolysis Reactions

The complexes I (2mmol) were dissolved in *ca.* 50 ml of CH_2Cl_2 and treated with an excess of gaseous HCl and a few drops of distilled water. The reaction

TABLE II. ¹H N.m.r. Spectra (CDCl₃)^a.

Complex	Signals	Assignment
Ila	1.65 S 3.84 S 7.1–6.7 M ^b 8.1–7.1 M,br 8.6–8.3 M ^b 11.7 br	COCH ₃ OCH ₃ C ₆ H ₄ PC ₆ H ₅ C ₆ H ₄ N-H [°]
Пр	1.62 S 2.3–0.8 M,br 4.6 M,br 8.1–7.1 M,br	COCH ₃ CH ₂ NCH PC ₆ H ₅
IIIa	1.34 S 3.87 S 6.9–6.7 M ^d 8.1–7.0 M,br	-CO-CH3 O-CH3 -C ₆ H ₄ - P-C ₆ H ₅ + -C ₆ H ₄ -
Шъ	1.33 S 2.10.9 M,br 4.4 M,br 8.27.0 M,br	COCH3 CH2- NCH< РС6Н5

^a δ Values in p.p.m. relative to TMS as internal standard; S = singlet, M = multiplet, br = broad, unresolved. ^bSymmetrical sides of AA'BB' pattern. ^cSignal observed at -60 °C. ^dSide of AA'BB' pattern, the other being masked by the strong PPh₃ resonances.

mixture was stirred overnight, then taken to dryness at reduced pressure. The solid residue was washed several times with water in order to eliminate the soluble ammonium salts, dried *in vacuo* for 3–4 hours, redissolved in a $CH_2Cl_2/MeOH$ mixture (1/1 in volume) and treated with NaClO₄·H₂O (0.422 g, 3 mmol). After 30 min the solvents were evaporated at reduced pressure and the product was extracted from the residue with 100 ml of CH_2Cl_2 . After addition of charcoal and filtration, the resulting solution was concentrated to small volume and the product was precipitated by addition of ethyl ether. It was purified by successive reprecipitation from the same solvents.

The hydrolysis reaction was also carried out by treating a CH_2Cl_2 solution of I (1 mmol in 50 ml of solvent) with 1 ml of aqueous $HClO_4$ (70%) and stirring the mixture for one day. The product was recovered as described above, without any further treatment with sodium perchlorate. Yields = 60-70%.

IIa: Anal. C₄₆H₄₁NO₆P₂Cl₂Pd. Calcd.: 58.58, H 4.38, N 1.48, Cl 7.52. Found: C 58.0, H 4.4, N 1.5, Cl 7.7%.

IIb: Anal. C₄₅H₄₅NO₅P₂Cl₂Pd. Calcd.: C 58.80, H 4.93, N 1.52, Cl 7.71. Found: C 59.1, H 4.9, N 1.5, Cl 7.8%.

Deprotonation Reactions

The compounds II (1 mmol) were dissolved in *ca.* 50 ml of CH_2Cl_2 and treated with 4–5 ml of NEt_3 .

After 10 min the reaction mixture was taken to dryness at reduced pressure. The solid residue was washed several times with water and dried *in vacuo* for 3-4 hours. The crude products were purified by successive reprecipitation from CH_2Cl_2 by addition of ethyl ether (complex IIIa) or from benzene by addition of ethyl ether/hexane (complex IIIb). Yields = 50-60%.

IIIa: Anal. C₄₆H₄₀NO₂P₂ClPd. Calcd.: C 65.57, H 4.78, N 1.66, Cl 4.21. Found: C 65.1, H 4.9, N 1.6, Cl 4.3%.

IIIb: Anal. C₄₅H₄₄NOP₂CIPd. Calcd.: C 66.02, H 5.42, N 1.71, Cl 4.33. Found: C 65.7, H 5.4, N 1.7, Cl 4.5%.

The conductivity and spectroscopic measurements were made as previously described [1].

References

- 1 B. Crociani, M. Nicolini and R. L. Richards, J. Organometal. Chem., 104, 259 (1976).
- 2 B. Crociani, M. Nicolini and R. L. Richards, J. Organomet. Chem., 113, C22 (1976).
- 3 B. Crociani and T. Boshi, J. Organometal. Chem., 24, C1 (1970).
- 4 P. M. Treichel, J. J. Benedict, R. W. Hess and P. J. Stenson, Chem. Comm., 1627 (1970).
- 5 M. F. Lappert and A. J. Oliver, Chem. Comm., 274 (1972).
- 6 D. F. Christian and W. R. Roper, J. Organometal. Chem., 80, C35 (1974).
- 7 D. F. Christian and H. C. Clark, J. Organometal. Chem., 85, C9 (1975).
- 8 B. Crociani, M. Nicolini and R. L. Richards, To be published.
- 9 E. D. Dobrzynski and R. J. Angelici, Inorg. Chem., 14, 59 (1975).